

OVERVIEW OF SOFTWARE RADIOS

Presented by Jeff Wepman
Institute for Telecommunication Sciences
National Telecommunications and Information Administration
United States Department of Commerce

Jeff Wepman

Institute for Telecommunication Sciences Phone: (410) 415-5541 FAX: (410) 415-5541

e-mail: jwepman@its.bldrdoc.gov

INTRODUCTION

- Software Radio Definition
- General Benefits of Software Radios
- Key Factors in Software Radios
 - Receiver: ADC's & Signal Processing Hardware
 - Transmitter: Signal Processing Hardware & DAC's (also Linear Pwr Amp)
- Conclusion & Software Radio Presentations at Symposium
 - Opening Session
 - Technologies Session
 - Applications Session

SOFTWARE RADIO DEFINITION

- The term "software radio"
 - Prefer very broad definition
 - Define in terms of receiver & transmitter
- Software Radio Receiver
 - Received signal digitized & processed w/DSP
 - Digitization may occur at RF, IF, or baseband
 - Inherent in definition: flexibility to change processing
 - Possesses some level of programmability to change the way it processes received signal
 - Belongs to general class Digitized Signal Receivers
 - Digitized Signal Receivers: Not necessarily programmable

SOFTWARE RADIO DEFINITION

Software Radio Transmitter

- Modulated signal to be transmitted generated w/DSP & converted to analog for transmission
- Modulated signal generated as digitized signal
- Conversion to analog may occur at baseband, IF, or RF
- Inherent in definition: flexibility to change processing
- Possesses some level of programmability to change the way it processes transmitted signal
- Belongs to general class Digitized Signal Transmitters
- Digitized Signal Transmitters: Not necessarily programmable

SOFTWARE RADIOS

- Software Radios do not necessarily imply digital modulation (FSK, PSK, etc.)
 - Modulation may be analog (FM, AM, etc.)
- Don't confuse modulation type w/Software Radio definition
 - Received signal digitized
 - Modulated signal generated as digitized signal in transmitter

BENEFITS OF SOFTWARE RADIOS

- Many benefits result replacing analog implementations radio functions w/ software or digital hardware
- Radios can be designed for transmission & reception w/ different freq. bands, modulation types, & BW's simply by changing software
- Potential reduction in product development time
- Radio functions can be implemented that cannot be implemented in analog hardware
 - Example: FIR filter, sharp rolloff & linear phase

BENEFITS OF SOFTWARE RADIOS

- Radio functions implemented w/ DSP offer performance closer to ideal
- Repeatability and temp stability substantially better than w/ analog hardware
- Radio functions implemented w/ DSP don't require tuning or tweaking typically required in analog hardware

Ideal Software Radio Receiver

- Digitization at output of antenna
- Illustrates key components: ADC & DSP
- Practical problems w/ideal software receivers
 - Bandlimit ADC input, prevent aliasing
 - ADC's require large signals (FSR ≈ 1V or more)
 - RF signals much smaller

Ideal Software Radio Receiver - Practical Problems

- RF signals
 - Overall amplitude at any time: very small to large
 - Small desired & Large undesired signals simultaneously
- Small RF signals require amplifier before ADC
- Large variation in overall amplitude requires AGC before ADC
 - AGC prevents ADC overload by large signals
 - AGC preserves good sensitivity for small signals
- Small desired w/ large undesired signal requires high SFDR ADC

MORE REALISITC SOFTWARE RADIO RECEIVER

- Practical implementation problems w/ configuration
 - Practical ADC & sig proc hardware constrain architecture
- For given radio service/ freq band
 - ADC sample rate, SFDR, & SNR along w/ speed of sig proc hardware determine where digitization can occur
 - RF, IF, or baseband
- Require closer look at ADC's and DSP hardware
- Overview: discuss briefly; Technology session: more detail

ANALOG TO DIGITAL CONVERSION

Methods of Sampling

• Important Specifications for Receivers

• Current State-of-the Art in ADC's

SAMPLING METHODS

- Two basic classes
 - Uniform time spacing between samples
 - Non-uniform (not readily available)

- When sampling signal uniformly
 - Spectrum of signal repeated at integer multiples of sampling frequency

UNIFORM SAMPLING METHODS

- 2 times max frequency
 - For perfectly bandlimited signal allows exact reconstruction of input signal
 - Need filter with infinite attenuation at frequencies $> f_{\text{max}}$
 - Filters not practically realizable
 - With real filters always get signal distortion

UNIFORM SAMPLING METHODS

- Oversampling
 - Sample at rates $> 2 f_{max}$
 - Improves SNR
 - Eases requirements on anti-aliasing filter
- Bandpass sampling
 - Sample at 2 or more times signal bandwidth not 2fmax
 - Good for bandpass signals (no freq. content below f_1 or above f_h)
 - Stringent restrictions on exact sample frequencies between 2 times BW and 2fmax
 - Requires much lower sampling frequencies than 2fmax

BANDPASS SAMPLING EXAMPLE

- 1 MHz BW signal @ 900 MHz center freq
 - Need to sample > 2 Msamples/sec not > 1800Msamples/sec
 - Exact sample rates above 2 Msamples/sec restricted
 - ADC must be able to operate on 900 MHz signal

IMPORTANT ADC SPECS

- Important software radio ADC specs include
 - Sample rate, Max analog input freq, SNR, & SFDR
- Theoretical maximum SNR for sinusoidal input
 - SNR = $6.02B + 1.76 + 10 \log_{10} (f_s/2f_{max}) dB$ B = # of bits, f_s = sampling freq.
 - If $f_s = 2f_{max}$, SNR $\approx 6B$
 - SNR increases as $f_s > 2f_{max}$ (Oversampling)

IMPORTANT ADC SPECS

• SFDR

- Ratio between signal power & largest spur
- Input signal Single tone or multitone (IMD)
- SFDR important Detect small signal in presence of large signal
- Theoretical prediction difficult (must measure)
- Misconception SFDR not equal to SNR
- SFDR can be much > SNR

DIGITAL SIGNAL PROCESSING

- Key considerations:
 - What RCVR/XMTR functions need implemented
 - Type of signal processing hardware to use
- Most radio receiver applications: need real time proc
 - Speed of processing must keep up w/ input data rate
- Estimate required processing speed by:
 - Number & complexity functions to implement
 - Input data rate into processing hardware
- Compare required proc speed to avail proc throughput of proc hardware

DIGITAL SIGNAL PROCESSING RADIO FUNCTIONS

- Radio functions possibly needed
 - Upconversion/Downconversion
 - Filtering
 - Modulation/Demodulation
 - Multiple Access Processing
 - Frequency Spreading/ Despreading
 - Encryption/Decryption
 - Channel & Source Coding/ Decoding

SIGNAL PROCESSING OPTIONS

- Four general classes of signal processing hardware
 - 1) General purpose microprocessors
 - 2) Digital signal processors
 - 3) Field programmable gate arrays (FPGA's)
 - 4) Application Specific Integrated Circuits (ASIC's)
 - Examples: digital downconverters, upconverters, demodulators

SIGNAL PROCESSING OPTIONS – COMPARISON METHODS

- Methods of comparison of different signal processing options
 - 1) Parallelism number of operations performed at same time
 - 2) Reuse of gates/ time sharing of same hardware to implement radio functions (algorithms)
 - 3) Flexibility/ Reprogrammability/ Reconfigurability
 - 4) Speed

COMPARISON OF SIGNAL PROCESSING OPTIONS

	Parallelism	Reuse of Gates/ Time Sharing	Flexibility/ Reprogrammability	Speed
Microprocessor	Low (none)	High	High	Low
DSP Chip	Some	Moderate		
FPGA	High	None		∀ High
ASIC	H ig h	None	↓ Low (None)	High

SIGNAL PROCESSING OPTIONS – CHOICES

- Choice of signal processing devices depends on:
 - 1) Required processing throughput for radio functions implemented
 - 2) Required amount reprogrammability/reconfigurability
 - 3) Background/ experience design team
 - 4) Time to market considerations
 - 5) Power consumption
 - 6) Cost related to quantity

CONCLUSION

- Software Radio Definition
 - Receiver & Transmitter
- General Benefits of Software Radios
- Key Factors in Software Radios
 - Receiver: ADC's & Signal Processing Hardware
 - Transmitter: Signal Processing Hardware & DAC's (also Linear Pwr Amp)
- Software Radio Presentations at Symposium
 - Two half-day sessions: Technologies, Applications
 - This Opening Session

SOFTWARE RADIO PRESENTATIONS

- Opening Session
 - MMITS Forum Activities Presentation
- Technologies Session
 - More about software radio architectures
 - RF interface issues
 - ADC's & DAC's
 - Digital Signal Processing: Techniques, DSP chips, FPGA's, & ASIC's

SOFTWARE RADIO PRESENTATIONS

- Applications Session
 - Current implementations of software radios
 - Cellular/ PCS applications
 - Speakeasy military software radio
 - GPS receiver application
 - HF/VHF/UHF applications
 - Wireless network applications